Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

2011

6. (a) $f: x \rightarrow f(x)$ is a periodic function defined for $x \in \mathbb{R}$.

The period is as indicated in the diagram.

(i) Write down the period and the range of the function.
(ii) Find $f(71)$.
(b) (i) Differentiate $(4 x-1)\left(3-2 x^{2}\right)$ with respect to x and simplify your answer.
(ii) Given that $y=\frac{1}{x^{2}-3 x}, x \neq 3$, find the range of values of x for which $\frac{d y}{d x}<0$.
(c) Let $f(x)=2 x+\frac{1}{x}$, where $x \in \mathbb{R}$ and $x \neq 0$.
(i) Find the equation of the tangent to the curve $y=f(x)$ at the point $P(1,3)$.
(ii) Q is another point on the curve $y=f(x)$ such that the tangent at Q is parallel to the tangent at P. Find the co-ordinates of Q.

Answers

6
(a) (i) Period $=4$, Range $=[-1,1]$
(ii) 0
(b) (i) $-4\left(6 x^{2}-x-3\right)$
(ii) $x>\frac{3}{2}, x \neq 3, x \in \mathbb{R}$
(c) (i) $x-y+2=0$
(ii) $Q(-1,-3)$
7. (a) Differentiate $x^{3}-7 x^{2}+6 x$ with respect to x.
(b) (i) Differentiate $\frac{3 x+1}{x-2}$ with respect to x.

Write your answer in the form $\frac{k}{(x-2)^{n}}$, where $k, n \in \mathbb{Z}$.
(ii) Given that $y=\left(x^{2}-2 x-9\right)^{4}$, find the value of $\frac{d y}{d x}$ when $x=-2$.
(c) A ball is rolled in a straight line along a surface.

The distance, s metres, the ball travels is given by

$$
s=18 t-2 t^{2}
$$

where t is the time in seconds from the instant the ball begins to move.
(i) Find the speed of the ball after 3 seconds.
(ii) How far is the ball from the starting point when it stops moving?
(iii) Show that the speed of the ball decreases at a constant rate while it is moving.

Answers

7 (a) $3 x^{2}-14 x+6$
(b) (i) $-\frac{7}{(x-2)^{2}}$
(ii) 24
(c) (i) $6 \mathrm{~m} / \mathrm{s}$
(ii) 40.5 m
8. Let $f(x)=\frac{1}{x+2}$, where $x \in \mathbb{R}$ and $x \neq-2$.
(i) Copy and complete the following table:

x	-5	-4	-3	-2.5	-1.5	-1	0	1
$f(x)$		-0.5	-1	-2				

(ii) The diagram shows part of the graph of the function f.

Copy and complete the graph from $x=-5$ to $x=1$.

							$f(x)$		
						4			
						3			
						2			
-6	-5	-4	-3	-2	-1	1	1	2	X
							0		
						-1			
						-2			
						-3			
						-4			

(iii) On the same diagram, draw the graph of the function $g(x)=x+2$ in the domain $-5 \leq x \leq 1$, where $x \in \mathbb{R}$.
(iv) Use your graphs to estimate the range of values of x for which $f(x) \leq g(x)$.
(v) Prove that the curve $y=f(x)$ has no turning points.

Answers

8 (i)

x	-5	-4	-3	-2.5	-1.5	-1	0	1
$f(x)$	$-\frac{1}{3}$	-0.5	-1	-2	2	1	$\frac{1}{2}$	$\frac{1}{3}$

(iii)

x	-5	-4	-3	-2	-1	0	1	2
$g(x)$	-3	-2	-1	0	1	2	3	4

(iv) $-3 \leq x \leq-2, x \geq-1$

