Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

2010

6 (a) Let $h(x)=x^{2}+1$, where $x \in \mathbf{R}$.
Write down a value of x for which $h(x)=50$.
(b) Let $g(x)=\frac{1}{x-2}$, where $x \in \mathbf{R}$ and $x \neq 2$.
(i) Copy and complete the following table:

x	0	1	$1 \cdot 5$	$1 \cdot 75$	$2 \cdot 25$	$2 \cdot 5$	3	4
$g(x)$		-1		-4		2		

(ii) Draw the graph of the function g in the domain $0 \leq x \leq 4$.
(c) Let $f(x)=x-\frac{5}{x}$, where $x \in \mathbf{R}$ and $x \neq 0$.
(i) Find $f^{\prime}(x)$, the derivative of $f(x)$.
(ii) Find the co-ordinates of the two points at which the tangent to the curve is parallel to the line

Answers

6 (a) $x=7$ or $x=-7$
(b) (i)

x	0	1	$1 \cdot 5$	$1 \cdot 75$	$2 \cdot 25$	$2 \cdot 5$	3	4
$g(x)$	-0.5	-1	-2	-4	4	2	1	0.5

(c) (i) $f^{\prime}(x)=1+\frac{5}{x^{2}}$
(ii) $(1,-4),(-1,4)$

7 (a) Differentiate $x^{2}-6 x+1$ with respect to x.
(b) (i) Differentiate $5-3 x$ with respect to x from first principles.
(ii) Given that $y=\left(x^{2}-4\right)(3 x-1)$, find the value of $\frac{d y}{d x}$ when $x=2$.
(c) The speed, v, of an object at time t is given by

$$
v=96+40 t-4 t^{2}
$$

where t is in seconds and v is in metres per second.
(i) At what times will the speed of the object be 96 metres per second?
(ii) What will the acceleration of the object be at $t=2 \cdot 5$ seconds?
(iii) At what value of t will the acceleration become negative?
8. Let $f(x)=x^{3}-3 x+1$, where $x \in \mathbf{R}$.
(i) Find $f(-3), f(-2), f(0), f(2)$ and $f(3)$.
(ii) Find $f^{\prime}(x)$, the derivative of $f(x)$.
(iii) Find the co-ordinates of the local maximum point and of the local minimum point of the curve $y=f(x)$.
(iv) Draw the graph of the function f in the domain $-3 \leq x \leq 3$.
(v) Find the range of values of k for which the equation

$$
x^{3}-3 x+1=k
$$

has three real solutions (roots).

Answers

7 (a) $2 x-6$
(b) (i) -3
(ii) 20
(c) (i) $t=0 \mathrm{~s}, 10 \mathrm{~s}$
(ii) 20 metres per second squared
(iii) $t>5 \mathrm{~s}$

8 (i) $f(-3)=-17, f(-2)=-1, f(0)=1, f(2)=3, f(3)=19$
(ii) $f^{\prime}(x)=3 x^{2}-3$
(iii) Local maximum ($-1,3$), Local minimum (1, -1)
(v) 3 solutions: $-1<k<3$

