DIFFERENTIATION & FUNCTIONS (Q 6, 7 & 8, PAPER 1)

2010

6 (a) Let $h(x) = x^2 + 1$, where $x \in \mathbf{R}$. Write down a value of x for which h(x) = 50.

(b) Let $g(x) = \frac{1}{x-2}$, where $x \in \mathbf{R}$ and $x \neq 2$.

(i) Copy and complete the following table:

x	0	1	1.5	1.75	2.25	2.5	3	4
g(x)		-1		-4		2		

(ii) Draw the graph of the function g in the domain $0 \le x \le 4$.

(c) Let
$$f(x) = x - \frac{5}{x}$$
, where $x \in \mathbf{R}$ and $x \neq 0$.

- (i) Find f'(x), the derivative of f(x).
- (ii) Find the co-ordinates of the two points at which the tangent to the curve is parallel to the line

Answers 6 (a) $x = 7$ or $x = -7$											
(b) (i)	x	0	1	1.5	1.75	2.25	2.5	3	4		
	<i>g</i> (<i>x</i>)	-0.5	-1	-2	-4	4	2	1	0.5		
(c) (i) $f'(x) = 1 + \frac{5}{x^2}$ (ii) (1, -4), (-1, 4)											

7 (a) Differentiate $x^2 - 6x + 1$ with respect to x.

(b) (i) Differentiate 5 - 3x with respect to x from first principles.

(ii) Given that $y = (x^2 - 4)(3x - 1)$, find the value of $\frac{dy}{dx}$ when x = 2.

(c) The speed, *v*, of an object at time *t* is given by

 $v = 96 + 40t - 4t^2$ where *t* is in seconds and *v* is in metres per second.

- (i) At what times will the speed of the object be 96 metres per second?
- (ii) What will the acceleration of the object be at t = 2.5 seconds?
- (iii) At what value of *t* will the acceleration become negative?
- 8. Let $f(x) = x^3 3x + 1$, where $x \in \mathbf{R}$.
 - (i) Find f(-3), f(-2), f(0), f(2) and f(3).
 - (ii) Find f'(x), the derivative of f(x).
 - (iii) Find the co-ordinates of the local maximum point and of the local minimum point of the curve y = f(x).
 - (iv) Draw the graph of the function *f* in the domain $-3 \le x \le 3$.
 - (v) Find the range of values of k for which the equation

 $x^3 - 3x + 1 = k$

has three real solutions (roots).

Answers 7 (a) 2x - 6(b) (i) -3 (ii) 20 (c) (i) t = 0 s, 10 s (ii) 20 metres per second squared (iii) t > 5 s 8 (i) f(-3) = -17, f(-2) = -1, f(0) = 1, f(2) = 3, f(3) = 19(ii) $f'(x) = 3x^2 - 3$ (iii) Local maximum (-1, 3), Local minimum (1, -1) (v) 3 solutions: -1 < k < 3