DIFFERENTIATION & FUNCTIONS (Q 6, 7 & 8, PAPER 1)

2009

6 (a) Let g(x) = 4 - kx. Given that g(-5) = 34, find the value of k.
(b) Let h(x) = x(1-x²), where x ∈ R. (i) Verify that h(3) + h(-3) = 0.
(ii) Find the values of x for which h'(x) = -11, where h'(x) is the derivative of h(x).
.
(c) Let f(x) = x³ - 6x² + 9x - 3, where x ∈ R. (i) Find the co-ordinates of the local maximum point and of the local minimum point of the curve y = f(x).
(ii) Draw the graph of the function f in the domain 0 ≤ x ≤ 4.
(iii) Use your graph to estimate the range of values of x for which x < 3 and f(x) ≥ 0.

> ANSWERS 6 (a) k = 6(b) (ii) $x = \pm 2$ (c) (i) Local maximum (1, 1), Local Minimum (3, -3) (iii) $0.5 \le x \le 1.6$

Answers			
7	(a) $15x^4 - 14x + 9$		
	(b) (i) 0	(ii) $\frac{4x}{(x^2+1)^2}$	
	(c) (i) 6 s	(ii) 10 m/s	(iii) 45 m

- 8 (a) Let g(x) = 2(6 3x), where $x \in \mathbf{R}$. Find the value of x for which g(x) = 0.
 - (b) Differentiate $2x^2 5x$ with respect to x from first principles.

(c) Let
$$f(x) = \frac{1}{x+1}, x \in \mathbf{R}, x \neq -1$$
.

- (i) Find f'(x), the derivative of f(x).
- (ii) Find the two values of x at which the slope of the tangent to the curve y = f(x) is -1.
- (iii) One of these tangents intersects the positive *y*-axis. Find the equation of this tangent.

8 (a)
$$x = 2$$

(b) $\frac{dy}{dx} = 4x - 5$
(c) (i) $-\frac{1}{(x+1)^2}$ (ii) $x = -2, 0$ (iii) $x + y - 1 = 0$