Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

2009

6 (a) Let $g(x)=4-k x$.
Given that $g(-5)=34$, find the value of k.
(b) Let $h(x)=x\left(1-x^{2}\right)$, where $x \in \mathbf{R}$.
(i) Verify that $h(3)+h(-3)=0$.
(ii) Find the values of x for which $h^{\prime}(x)=-11$, where $h^{\prime}(x)$ is the derivative of $h(x)$.
(c) Let $f(x)=x^{3}-6 x^{2}+9 x-3$, where $x \in \mathbf{R}$.
(i) Find the co-ordinates of the local maximum point and of the local minimum point of the curve $y=f(x)$.
(ii) Draw the graph of the function f in the domain $0 \leq x \leq 4$.
(iii) Use your graph to estimate the range of values of x for which $x<3$ and $f(x) \geq 0$.

Answers

6 (a) $k=6$
(b) (ii) $x= \pm 2$
(c) (i) Local maximum $(1,1)$, Local Minimum $(3,-3)$
(iii) $0.5 \leq x \leq 1.6$

7 (a) Differentiate $3 x^{5}-7 x^{2}+9 x$ with respect to x.
(b) (i) Given that $y=\left(x^{2}-4 x\right)^{5}$, find the value of $\frac{d y}{d x}$ when $x=2$.
(ii) Differentiate $\frac{x^{2}-1}{x^{2}+1}$ with respect to x.

Write your answer in the form $\frac{k x}{\left(x^{2}+1\right)^{n}}$, where $k, n \in \mathbf{N}$.
(c) A ball is fired straight up in the air.

The height, h metres, of the ball above the ground is given by

$$
h=30 t-5 t^{2}
$$

where t is the time in seconds after the ball was fired.
(i) After how many seconds does the ball hit the ground?
(ii) Find the speed of the ball after 2 seconds.
(iii)Find the maximum height reached by the ball.

Answers

7 (a) $15 x^{4}-14 x+9$
(b) (i) 0
(ii) $\frac{4 x}{\left(x^{2}+1\right)^{2}}$
(c) (i) 6 s
(ii) $10 \mathrm{~m} / \mathrm{s}$
(iii) 45 m

8 (a) Let $g(x)=2(6-3 x)$, where $x \in \mathbf{R}$.
Find the value of x for which $g(x)=0$.
(b) Differentiate $2 x^{2}-5 x$ with respect to x from first principles.
(c) Let $f(x)=\frac{1}{x+1}, x \in \mathbf{R}, x \neq-1$.
(i) Find $f^{\prime}(x)$, the derivative of $f(x)$.
(ii) Find the two values of x at which the slope of the tangent to the curve $y=f(x)$ is -1 .
(iii) One of these tangents intersects the positive y-axis.

Find the equation of this tangent.
$8 \quad$ (a) $x=2$
(b) $\frac{d y}{d x}=4 x-5$
(c) \quad (i) $-\frac{1}{(x+1)^{2}}$
(ii) $x=-2,0$
(iii) $x+y-1=0$

