DIFFERENTIATION & FUNCTIONS (Q 6, 7 & 8, PAPER 1)

2007

Answers			
6	(a) (i) $g'(x) = 2x - 6$	(ii) $x = 3$	
	(b) (i) 6 minutes	(ii) 5 degrees	(iii) $k = -6$
	(c) (i) $f'(x) = 20(5x-2)^3$	(ii) $(\frac{3}{5}, 1)$	

7 (a) Differentiate $6x^4 - 3x^2 + 7x$ with respect to x. (b) (i) Differentiate $(x^2 + 9)(4x^3 + 5)$ with respect to x. (ii) Given that $y = \frac{3x}{2x+3}$, find $\frac{dy}{dx}$. Write your answer in the form $\frac{k}{(2x+3)^n}$, where $k, n \in \mathbb{N}$. (c) A car starts from rest at the point a. (c) A car starts from rest at the poin

- (ii) Find the acceleration of the car.
- (iii) The distance from *a* to the point *b* is 24 metres. After how many seconds does the car reach the point *b*?
- 8 (a) Let $f(x) = \frac{1}{4}(6-2x)$ for $x \in \mathbf{R}$. Evaluate f(5).
 - (b) Differentiate $x^2 3x$ with respect to x from first principles.
 - (c) Let $f(x) = \frac{1}{x+7}, x \in \mathbf{R}, x \neq -7.$

(i) Given that f(k) = 1, find k.

- (ii) Find f'(x), the derivative of f(x).
- (iii) Show that the curve y = f(x) has no turning points.

ANSWERS 7 (a) $24x^3 - 6x + 7$ (b) (i) $20x^4 + 108x^2 + 10x$ (ii) $\frac{9}{(2x+3)^2}$ (c) (i) 10 ms^{-1} (ii) 4 ms^{-2} (iii) 3 s8 (a) f(5) = -1(b) 2x - 3(c) (i) k = -6 (ii) $f'(x) = -\frac{1}{(x+7)^2}$