Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

1998

6 (a) If $f(x)=5 x-8$ and $g(x)=13-2 x$, find the value of x for which

$$
f(x)=g(x) .
$$

(b) The speed, v, in metres per second of an engine moving along a track is related to time, t, in seconds by

$$
v=\frac{1}{3}(2 t+5) .
$$

(i) Draw the straight line graph of this relation, putting t on the horizontal axis, for $0 \leq t \leq 8$.
(ii) Use your graph to estimate the speed when $t=2.5$ seconds.
(iii) Use your graph to estimate the time at which the speed reaches 6 metres per second.
(c) $f(x)=(x+k)(x-2)^{2}$, where k is a real number.
(i) If $f(3)=7$, find the value of k.
(ii) Using this value for k, find the coordinates of the local maximum and of the local minimum of $f(x)$.

Answers

6 (a) 3
(b) (ii) $3.3 \mathrm{~ms}^{-1}$
(iii) 6.5 s
(c) (i) 4
(ii) $(2,0),(-2,32)$

7 (a) Differentiate with respect to x
(i) $x^{2}-3 x$
(ii) $\frac{1}{x^{2}}$.
(b) (i) Find $\frac{d y}{d x}$ when $y=\frac{2 x}{x^{2}+1}$.
(ii) Find $\frac{d y}{d x}$ when $y=\left(4-3 x^{2}\right)^{7}$ and write down the range of values of x for which $\frac{d y}{d x}>0$.
(c) The volume of water, V, in cm^{3}, that remains in a leaking tank after t seconds is given by

$$
V=45000-300 t+0.5 t^{2}
$$

(i) After how many seconds will the tank be empty?
(ii) Find the rate of change of the volume with respect to t when $t=50$ seconds.

8 Let $f(x)=\frac{1}{x-1}$, for $x \in \mathbf{R}$ and $x \neq 1$.
(i) Find the value of $f(-2), f(0), f\left(\frac{3}{2}\right)$ and $f(5)$.
(ii) Find $f^{\prime}(x)$, the derivative of $f(x)$.
(iii) Draw the graph of $f(x)$ for $-2 \leq x \leq 5$.
(iv) Find the equation of the tangent T to the curve at the point $(0,-1)$.
(v) Find the coordinates of the other point on the graph of $f(x)$ at which the tangent to the curve is parallel to T.

Answers

(a) (i) $2 x-3$
(ii) $-\frac{2}{x^{3}}$
(b) (i) $\frac{2-2 x^{2}}{\left(x^{2}+1\right)^{2}}$
(ii) $-42 x\left(4-3 x^{2}\right)^{6}, x<0$
(c) (i) 300 s
(ii) $-250 \mathrm{~cm}^{3} / \mathrm{s}$
8 (i) $-\frac{1}{3},-1,2, \frac{1}{4}$
(ii) $-\frac{1}{(x-1)^{2}}$
(iv) $x+y+1=0$
(v) $(2,1)$

