Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

1996

6 (a) Let $f(x)=3 x+k, x \in \mathbf{R}$.
If $f(5)=0$, find the value of k.
(b) Let $g(x)=x^{2}+b x+c, x \in \mathbf{R}$.

The solutions of $g(x)=0$ are symmetrical about the line $x=1$.
If $x=-3$ is one solution of $g(x)=0$, find the other solution.
Find the value of b and the value of c.
(c) Let $f(x)=\frac{1}{x-2}$, for $x \in \mathbf{R}$ and $x \neq 2$.

Find the derivative of $f(x)$.
Tangents to $f(x)$ make an angle of 135° with the x axis.
Find the coordinates of the points on the curve of $f(x)$ at which this occurs.

Answers
6 (a) -15
(b) $x=5 ;-1 \leq x \leq 3$.
(c) $-\frac{1}{(x-2)^{2}} ;(1,-1),(3,1)$

7 (a) Differentiate from first principles

$$
3 x-7
$$

with respect to x.
(b) (i) Find $\frac{d y}{d x}$ when $y=\frac{2 x}{4-x^{2}}$, for $x \in \mathbf{R}$ and $x \neq \pm 2$.

Show that $\frac{d y}{d x}>0$.
(ii) Differentiate $\left(x^{5}-\frac{1}{x^{2}}\right)^{7}$ with respect to $x, x \neq 0$.
(c) A stone is dropped from a height of 80 metres. Its height h metres above the ground after t seconds is given by

$$
h=80-t^{2} .
$$

Find

(i) its speed after t seconds
(ii) its speed after 2.5 seconds
(iii) the time it takes to fall the first 14.4 metres.

8 (a) Find $\frac{d s}{d t}$ when $s=6 t^{2}-3 t+7$.
(b) Let $f(x)=x^{3}-3 x^{2}$, for $x \in \mathbf{R}$.
(i) Find $f^{\prime}(x)$, the derivative of $f(x)$. Hence, calculate the coordinates of the local maximum and the local minimum of $f(x)$.
(ii) Draw the graph of

$$
f(x)=x^{3}-3 x^{2}
$$

for $-1 \leq x \leq 3$.
(iii) Use your graph to estimate the values of x for which

$$
f(x)+2=0 .
$$

(iv) Use your graph to estimate the range of values of x for which

$$
f^{\prime}(x)<0
$$

Answers

7 (a) (a) 3
(b) (i) $-\frac{2 x^{2}+4}{\left(4-x^{2}\right)^{2}}$
(ii) $\left(35 x^{4}+\frac{14}{x^{3}}\right)\left(x^{5}-\frac{1}{x^{2}}\right)^{6}$
(c) (i) $2 t \mathrm{~ms}^{-1}$
(ii) $5 \mathrm{~m} \mathrm{~s}^{-1}$
(iii) 8.1 s

8 (a) $12 t-3$
(b) (i) $3 x^{2}-6 x ;(0,0),(2,-4)$
(iii) $x=-0.7,1,2.7$
(iv) $0<x<2$

