Arithmetic (Q 1, Paper 1)

Lesson No. 6: Interest

2007

1 (b) €8500 was invested for 2 years at compound interest.
(i) The rate of interest for the first year was 4%.

Find the amount of the investment at the end of the first year.
(ii) The amount of the investment at the end of the second year was $€ 9237 \cdot 80$. Find the rate of interest for the second year.

Solution

1 (b) (i) If the sum of money P is invested for n years at the rate per annum of $R \%$ which remains unchanged for each year then the amount at the end of n years is:

$$
\begin{equation*}
A=P\left(1+\frac{R}{100}\right)^{n} \tag{3}
\end{equation*}
$$

Year 1:

$P=€ 8,500$
$n=1$
$R=4$
$A=$?

1 (b) (ii)

Year 2:
$P=€ 8,840$
$n=1$

$$
\begin{aligned}
& A=P\left(1+\frac{R}{100}\right)^{n} \Rightarrow 9237.8=8840\left(1+\frac{R}{100}\right)^{1} \\
& \Rightarrow\left(1+\frac{R}{100}\right)=\frac{9237.8}{8840} \Rightarrow 1+\frac{R}{100}=1.045 \Rightarrow \frac{R}{100}=0.045
\end{aligned}
$$

$R=$?
$A=€ 9237 \cdot 80$

$$
\therefore R=4.5 \%
$$

2003

1 (c) (ii) What sum of money invested at 6% per annum compound interest will amount to $€ 5000$ in 7 years?
Give your answer correct to the nearest euro.

Solution

$R=6 \%$
$A=€ 5,000$
$n=7$
$P=?$

$$
A=P\left(1+\frac{R}{100}\right)^{n}
$$

$5000=P\left(1+\frac{6}{100}\right)^{7} \Rightarrow 5000=P(1.06)^{7}$
$\therefore P=\frac{5000}{(1.06)^{7}}=€ 3,325$

2001

1 (c) IR£5000 was invested for 3 years at compound interest.
The rate for the first year was 4%. The rate for the second year was $4 \frac{1}{2} \%$.
(i) Find the amount of the investment at the end of the second year.

At the beginning of the third year a further IR£4000 was invested.
The rate for the third year was r \%.
The total investment at the end of the third year was IR£9811.36.
(ii) Calculate the value of r.

Solution

1 (c) (i)
Year 1:
$P=£ 5,000$

$$
A=P\left(1+\frac{R}{100}\right)^{n} \ldots
$$

$n=1$
$R=4 \%$
$A_{1}=$?
$A_{1}=5000\left(1+\frac{4}{100}\right)^{1}=5000(1.04)=£ 5200$

Year 2:

$P=£ 5020$
$n=1$
$R=4.5 \%$
$A_{2}=$?

1 (c) (ii)

Year 3:
$P=£ 5434+£ 4000=£ 9434$
$A_{2}=5020\left(1+\frac{4.5}{100}\right)^{1}=5020(1.045)=£ 5434$
$n=1$
$R=$?
$A=£ 9811.36$

$$
\begin{aligned}
& 9811.36=9434\left(1+\frac{R}{100}\right)^{1} \Rightarrow \frac{9811.36}{9434}=\left(1+\frac{R}{100}\right) \\
& \Rightarrow 1.04=1+\frac{R}{100} \Rightarrow 0.04=\frac{R}{100} \\
& \therefore R=4 \%
\end{aligned}
$$

1998

1 (b) (i) At what rate of interest will IR£2000 amount to IR£2065 after one year?
Solution
$R=$?
$P=£ 2,000$
$A=£ 2,065$

$$
\begin{equation*}
A=P\left(1+\frac{R}{100}\right)^{n} \tag{3}
\end{equation*}
$$

$n=1$

$$
\begin{aligned}
& 2065=2000\left(1+\frac{R}{100}\right)^{1} \Rightarrow \frac{2065}{2000}=\left(1+\frac{R}{100}\right) \\
& \Rightarrow 1.0325=1+\frac{R}{100} \Rightarrow 0.0325=\frac{R}{100} \\
& \therefore R=100 \times 0.0325=3.25 \%
\end{aligned}
$$

1997

1 (b) IR£2500 was invested for three years at compound interest.
The rate of interest was 4% per annum for the first year and 3% per annum for the second year.
Calculate the amount of the investment after two years.
If the investment amounted to IR£2744.95 after three years, calculate the rate of interest per annum for the third year.

Solution

1 (b)

Year 1:
$P=£ 2500$

$$
\begin{equation*}
A=P\left(1+\frac{R}{100}\right)^{n} \tag{3}
\end{equation*}
$$

$R=4 \%$
$n=1$
$A_{1}=$?

$$
A_{1}=2500\left(1+\frac{4}{100}\right)^{1}=2500(1.04)=£ 2600
$$

Year 2:

P=£2600
$R=3 \%$
$n=1$
$A_{2}=2600\left(1+\frac{3}{100}\right)^{1}=2600(1.03)=£ 2678$
$A_{2}=$?

Year 3:
$P=£ 2678$
$R=$?
$\begin{aligned} & n=1 \\ & A_{3}=£ 2744.95\end{aligned} \quad \Rightarrow 1.025=1+\frac{R}{100} \Rightarrow \frac{R}{100}=0.025$
$\therefore R=0.025(100)=2.5 \%$

