Arithmetic (Q 1, Paper 1)

2007
1 (a) Convert 164 miles to kilometres, taking 5 miles to be equal to 8 kilometres.
(b) $€ 8500$ was invested for 2 years at compound interest.
(i) The rate of interest for the first year was 4%.

Find the amount of the investment at the end of the first year.
(ii) The amount of the investment at the end of the second year was $€ 9237.80$. Find the rate of interest for the second year.
(c) The table shows the hours Alan worked over four days.

Day	Thursday	Friday	Saturday	Sunday
Hours worked	9	9	$9 \cdot 5$	h

Alan's basic rate of pay is $€ 15 \cdot 60$ per hour.
He is paid one and a half times the basic rate for work on Saturday and Sunday.
(i) Calculate Alan's total pay for Thursday, Friday and Saturday.
(ii) Alan was paid a total of $€ 702$ for the four days' work.

Find h, the number of hours Alan worked on Sunday.

Solution

1 (a)

> If one quantity is directly proportional to another, then if you multiply or divide one quantity by a number you must do the same to the other quantity.

Convert 164 miles to kilometres, taking 5 miles to be equal to 8 kilometres.
5 miles $=8 \mathrm{~km}$
1 mile $=\frac{8}{5} \mathrm{~km}$
164 miles $=\quad \frac{8}{5} \times 164=262.4 \mathrm{~km}$

1 (b) (i) If the sum of money P is invested for n years at the rate per annum of $R \%$ which remains unchanged for each year then the amount at the end of n years is:

$$
\begin{equation*}
A=P\left(1+\frac{R}{100}\right)^{n} \tag{3}
\end{equation*}
$$

Year 1:
$P=€ 8,500$
$n=1$
$A=P\left(1+\frac{R}{100}\right)^{n}=8500\left(1+\frac{4}{100}\right)^{1}=€ 8,840$
$R=4$
$A=$?

1 (b) (ii)

Year 2:
$P=€ 8,840$
$n=1$
$R=$?
$A=€ 9237 \cdot 80$

$$
\begin{aligned}
& A=P\left(1+\frac{R}{100}\right)^{n} \Rightarrow 9237.8=8840\left(1+\frac{R}{100}\right)^{1} \\
& \Rightarrow\left(1+\frac{R}{100}\right)=\frac{9237.8}{8840} \Rightarrow 1+\frac{R}{100}=1.045 \Rightarrow \frac{R}{100}=0.045 \\
& \therefore R=4.5 \%
\end{aligned}
$$

1 (c)

Day	Thursday	Friday	Saturday	Sunday
Hours worked	9	9	$9 \cdot 5$	h

Basic Rate: $€ 15.60$ per hour
Weekend rate: $€ 15.60 \times 1.5=€ 23.40$
1 (c) (i) Number of hours worked on Thursday and Friday at the basic rate: 18 hours
Number of hours worked on Saturday at the weekend rate: 9.5 hours
Pay for these 3 days $=18 \times € 15.60+9.5 \times € 23.40=€ 503.10$
1 (c) (ii) Total pay for 4 days $=€ 702$
Total pay for Sunday: $€ 702-€ 503.10=€ 198.90$
$\therefore h \times € 23.40=€ 198.90 \Rightarrow h=\frac{198.90}{23.40}=8.5$ hours

