Arithmetic (Q 1, Paper 1)

2005
1 (a) Express 35 cm as a fraction of 1 m . Give your answer in its simplest form.
(b) (i) The approximation 50×80 was used for the calculation 51×79. Find the percentage error, correct to one decimal place.
(ii) Express the ratio $\frac{1}{2}: \frac{1}{3}: \frac{1}{4}$ as a ratio of natural numbers.

Divide 325 in the ratio $\frac{1}{2}: \frac{1}{3}: \frac{1}{4}$.
(c) At the start of the year 2000 the population of a particular town was P. During the year 2000, the population of the town increased by 10%.
(i) Express, in terms of P, the population of the town at the end of the year 2000.
(ii) During the year 2001 the population of the town increased by 4%.

During the year 2002 the population increased by 2%.
Find the total percentage increase in the population of the town over the three years.
(iii) The actual increase in the population was 8344 . Find the value of P.

Solution

1 (a) Express each quantity in the same units, say cm .

1 kilometre $(\mathrm{km})=1000 \mathrm{~m}$ 100 centimetres $(\mathrm{cm})=1 \mathrm{~m}$ 1000 millimetres $(\mathrm{mm})=1 \mathrm{~m}$
$\therefore \frac{35 \mathrm{~cm}}{100 \mathrm{~cm}}=\frac{7}{20}$
1 (b) (i) Finding the Percentage Error
STEPS

1. Find the absolute error: Absolute error $=\mid$ True value - Estimate \mid
2. Find the fractional error: Fractional error $=\frac{\text { Absolute Error }}{\text { True Value }}$
3. Find the percentage error: $\%$ Error $=\frac{\text { Absolute Error }}{\text { True Value }} \times 100 \%$
4. True value: $51 \times 79=4029$ Estimate: $50 \times 80=4000$

Absolute Error $=|4029-4000|=29$
2. Fractional error $=\frac{29}{4029}$
3. $\%$ error $=\frac{29}{4029} \times 100 \%=0.7 \%$

$$
\text { \% Error }=\frac{\text { Absolute Error }}{\text { True Value }} \times 100 \%
$$

1 (b) (ii) Multiply each fraction by the lowest common denominator which is 12 .
$\therefore \frac{1}{2}: \frac{1}{3}: \frac{1}{4}=6: 4: 3$
Add the three numbers: $6+4+3=13$
First number: $\frac{6}{13} \times 325=150$
Second number: $\frac{4}{13} \times 325=100$
Third number: $\frac{3}{13} \times 325=75$
1 (c)
(i) Multiply P by 1.1.

Population at end of $2000=1.1 P$
(ii) Population after 3 years $=1.1 P \times 1.04 \times 1.02=1.16688 P$

To find the percentage increase from this result, follow the steps to increase a quantity by a percentage backwards.
$1.16688-1=0.16688=16.688 \%$
(iii) $\%$ increase $=16.688 \%=0.16688$

$$
\therefore P=\frac{8344}{0.16688}=50,000
$$

