SAMPLE PAPER 2014 (SET F): PAPER 2

QUESTION 4 (25 MARKS)

Question 4 (a)

QUESTION 4 (b)

The radius r of c is the length of |PQ|.

$$P(-2, -1) = (x_1, y_1), Q(3, 1) = (x_2, y_2)$$

$$r = |PQ| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(3 - (-2))^2 + (1 - (-1))^2}$$

$$= \sqrt{5^2 + 2^2}$$

$$= \sqrt{25 + 4}$$

$$= \sqrt{29}$$

Circle c: Centre (-2, -1) = (h, k), radius $r = \sqrt{29}$

$$(x-h)^2 + (y-k)^2 = r^2$$

$$(x-(-2))^2 + (y-(-1))^2 = (\sqrt{29})^2$$

$$(x+2)^2 + (y+1)^2 = 29$$

 $\frac{\text{QUESTION 4 (c)}}{\text{Slope } m_1 \text{ of } PQ}$:

$$P(-2, -1) = (x_1, y_1), Q(3, 1) = (x_2, y_2)$$

$$m_1 = \frac{1 - (-1)}{3 - (-2)} = \frac{1 + 1}{3 + 2} = \frac{2}{5}$$

Slope m_2 of QR:

$$R(1, 6) = (x_1, y_1), Q(3, 1) = (x_2, y_2)$$

$$m_2 = \frac{6-1}{1-3} = \frac{5}{-2} = -\frac{5}{2}$$

$$m_1 \times m_2 = (\frac{2}{5})(-\frac{5}{2}) = -1$$

PQ is perpendicular to QR as the product of their slopes is equal to -1. Therefore, RQ is a tangent to c.

Plot points P(-2, -1) and Q(3, 1). Draw the circle c with centre P passing through Q.

FORMULAE AND TABLES BOOK Co-ordinate geometry: Circle [page 19]

Given centre (h, k) and radius r

$$(x-h)^2 + (y-k)^2 = r^2$$

